Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 23(6): 878-891, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618831

RESUMO

The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood-brain barrier. The recent identification and characterization of a small population of regulatory T (Treg) cells resident in the brain presents one such potential therapeutic target. Here, we identified brain interleukin 2 (IL-2) levels as a limiting factor for brain-resident Treg cells. We developed a gene-delivery approach for astrocytes, with a small-molecule on-switch to allow temporal control, and enhanced production in reactive astrocytes to spatially direct delivery to inflammatory sites. Mice with brain-specific IL-2 delivery were protected in traumatic brain injury, stroke and multiple sclerosis models, without impacting the peripheral immune system. These results validate brain-specific IL-2 gene delivery as effective protection against neuroinflammation, and provide a versatile platform for delivery of diverse biologics to neuroinflammatory patients.


Assuntos
Astrócitos , Produtos Biológicos , Animais , Encéfalo , Humanos , Interleucina-2/genética , Interleucinas , Camundongos , Doenças Neuroinflamatórias , Linfócitos T Reguladores
2.
Hum Mol Genet ; 29(4): 605-617, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31814004

RESUMO

Worldwide, stroke is the main cause of long-term adult disability. After the initial insult, most patients undergo a subacute period with intense plasticity and rapid functional improvements. This period is followed by a chronic phase where recovery reaches a plateau that is only partially modifiable by rehabilitation. After experimental stroke, various subacute rehabilitation paradigms improve recovery. However, in order to reach the best possible outcome, a combination of plasticity-promoting strategies and rehabilitation might be necessary. EphA4 is a negative axonal guidance regulator during development. After experimental stroke, reduced EphA4 levels improve functional outcome with similar beneficial effects upon the inhibition of EphA4 downstream targets. In this study, we assessed the effectiveness of a basic enriched environment in the chronic phase after photothrombotic stroke in mice as well as the therapeutic potential of EphA4 targeted therapy followed by rehabilitation. Our findings show that environmental enrichment in the chronic phase improves functional outcome up to 2 months post-stroke. Although EphA4 levels increase after experimental stroke, subacute EphA4 inhibition followed by environmental enrichment does not further increase recovery. In conclusion, we show that environmental enrichment during the chronic phase of stroke improves functional outcome in mice with no synergistic effects of the used EphA4 targeted therapy.


Assuntos
Modelos Animais de Doenças , Fragmentos de Peptídeos/farmacologia , Receptor EphA4/antagonistas & inibidores , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Fosforilação , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia
3.
Front Neurosci ; 13: 1233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803009

RESUMO

EphA4 is a receptor of the Eph-ephrin system, which plays an important role in axon guidance during development. Previously, we identified EphA4 as a genetic modifier of amyotrophic lateral sclerosis (ALS) in both zebrafish and rodent models, via modulation of the intrinsic vulnerability, and re-sprouting capacity of motor neurons. Moreover, loss of EphA4 rescued the motor axon phenotype in a zebrafish model of spinal muscular atrophy (SMA). Similar to ALS, SMA is a neurodegenerative disorder affecting spinal motor neurons resulting in neuromuscular junction (NMJ) denervation, muscle atrophy and paralysis. In this study, we investigated the disease modifying potential of reduced EphA4 protein levels in the SMNΔ7 mouse model for severe SMA. Reduction of EphA4 did not improve motor function, survival, motor neuron survival or NMJ innervation. Our data suggest that either lowering EphA4 has limited therapeutic potential in SMA or that the clinical severity hampers the potential beneficial role of EphA4 reduction in this mouse model for SMA.

4.
Alzheimers Res Ther ; 11(1): 102, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831046

RESUMO

BACKGROUND: EphA4 is a receptor of the ephrin system regulating spine morphology and plasticity in the brain. These processes are pivotal in the pathophysiology of Alzheimer's disease (AD), characterized by synapse dysfunction and loss, and the progressive loss of memory and other cognitive functions. Reduced EphA4 signaling has been shown to rescue beta-amyloid-induced dendritic spine loss and long-term potentiation (LTP) deficits in cultured hippocampal slices and primary hippocampal cultures. In this study, we investigated whether EphA4 ablation might preserve synapse function and ameliorate cognitive performance in the APPPS1 transgenic mouse model of AD. METHODS: A postnatal genetic ablation of EphA4 in the forebrain was established in the APPPS1 mouse model of AD, followed by a battery of cognitive tests at 9 months of age to investigate cognitive function upon EphA4 loss. A Golgi-Cox staining was used to explore alterations in dendritic spine density and morphology in the CA1 region of the hippocampus. RESULTS: Upon EphA4 loss in APPPS1 mice, we observed improved social memory in the preference for social novelty test without affecting other cognitive functions. Dendritic spine analysis revealed altered synapse morphology as characterized by increased dendritic spine length and head width. These modifications were independent of hippocampal plaque load and beta-amyloid peptide levels since these were similar in mice with normal versus reduced levels of EphA4. CONCLUSION: Loss of EphA4 improved social memory in a mouse model of Alzheimer's disease in association with alterations in spine morphology.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Comportamento Animal/fisiologia , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Receptor EphA4/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Forma Celular/genética , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Receptor EphA4/metabolismo , Sinapses/metabolismo , Sinapses/patologia
5.
Sci Rep ; 9(1): 14112, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575928

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons resulting in severe neurological symptoms. Previous findings of our lab suggested that the axonal guidance tyrosine-kinase receptor EphA4 is an ALS disease-modifying gene. Reduction of EphA4 from developmental stages onwards rescued a motor neuron phenotype in zebrafish, and heterozygous deletion before birth in the SOD1G93A mouse model of ALS resulted in improved survival. Here, we aimed to gain more insights in the cell-specific role of decreasing EphA4 expression in addition to timing and amount of EphA4 reduction. To evaluate the therapeutic potential of lowering EphA4 later in life, we ubiquitously reduced EphA4 levels to 50% in SOD1G93A mice at 60 days of age, which did not modify disease parameters. Even further lowering EphA4 levels ubiquitously or in neurons, did not improve disease onset or survival. These findings suggest that lowering EphA4 as target in ALS may suffer from a complex therapeutic time window. In addition, the complexity of the Eph-ephrin signalling system may also possibly limit the therapeutic potential of such an approach in ALS. We suggest here that a specific EphA4 knockdown in adulthood may have a limited therapeutic potential for ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Receptor EphA4/metabolismo , Animais , Modelos Animais de Doenças , Heterozigoto , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/metabolismo , Fenótipo , Transdução de Sinais/fisiologia , Superóxido Dismutase-1/metabolismo , Peixe-Zebra/metabolismo
6.
Acta Neuropathol Commun ; 7(1): 114, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300041

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects motor neurons in the brainstem, spinal cord and motor cortex. ALS is characterized by genetic and clinical heterogeneity, suggesting the existence of genetic factors that modify the phenotypic expression of the disease. We previously identified the axonal guidance EphA4 receptor, member of the Eph-ephrin system, as an ALS disease-modifying factor. EphA4 genetic inhibition rescued the motor neuron phenotype in zebrafish and a rodent model of ALS. Preventing ligands from binding to the EphA4 receptor also successfully improved disease, suggesting a role for EphA4 ligands in ALS. One particular ligand, ephrin-A5, is upregulated in reactive astrocytes after acute neuronal injury and inhibits axonal regeneration. Moreover, it plays a role during development in the correct pathfinding of motor axons towards their target limb muscles. We hypothesized that a constitutive reduction of ephrin-A5 signalling would benefit disease progression in a rodent model for ALS. We discovered that in the spinal cord of control and symptomatic ALS mice ephrin-A5 was predominantly expressed in neurons. Surprisingly, reduction of ephrin-A5 levels in SOD1G93A mice accelerated disease progression and reduced survival without affecting disease onset, motor neuron numbers or innervated neuromuscular junctions in symptomatic mice. These findings suggest ephrin-A5 as a modifier of disease progression that might play a role in the later stages of the disease. Similarly, we identified a more aggressive disease progression in patients with lower ephrin-A5 protein levels in the cerebrospinal fluid without modifying disease onset. In summary, we identified reduced expression of ephrin-A5 to accelerate disease progression in a mouse model of ALS as well as in humans. Combined with our previous findings on the role of EphA4 in ALS our current data suggests different contribution for various members of the Eph-ephrin system in the pathophysiology of a motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Progressão da Doença , Efrina-A5/deficiência , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Efrina-A5/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Superóxido Dismutase-1/genética
8.
Ageing Res Rev ; 12(1): 316-28, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22974653

RESUMO

Dietary intake changes during the course of aging. Normally an increase in food intake is observed around 55 years of age, which is followed by a reduction in food intake in individuals over 65 years of age. This reduction in dietary intake results in lowered levels of body fat and body weight, a phenomenon known as anorexia of aging. Anorexia of aging has a variety of consequences, including a decline in functional status, impaired muscle function, decreased bone mass, micronutrient deficiencies, reduced cognitive functions, increased hospital admission and even premature death. Several changes during lifetime have been implicated to play a role in the reduction in food intake and the development of anorexia of aging. These changes are both physiological, involving peripheral hormones, senses and central brain regulation and non-physiological, with differences in psychological and social factors. In the present review, we will focus on age-related changes in physiological and especially non-physiological factors, that play a role in the age-related changes in food intake and in the etiology of anorexia of aging. At the end we conclude with suggestions for future nutritional research to gain greater understanding of the development of anorexia of aging which could lead to earlier detection and better prevention.


Assuntos
Envelhecimento/fisiologia , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Meio Social , Idoso , Idoso de 80 Anos ou mais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Hormônios/fisiologia , Humanos , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Sensação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...